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Abstract
We study the kinetics of a two-species catalysis-driven aggregation system, in
which an irreversible aggregation between any two clusters of one species
occurs only with the catalytic action of another species. By means of
a generalized mean-field rate equation, we obtain the asymptotic solutions
of the cluster mass distributions in a simple process with a constant rate
kernel. For the case without any consumption of the catalyst, the cluster
mass distribution of either species always approaches a conventional scaling
law. However, the evolution behaviour of the system in the case with catalyst
consumption is complicated and depends crucially on the relative data of the
initial concentrations of the two species.

PACS numbers: 82.20.−w, 82.30.Vy, 68.43.Jk, 89.75.Da

1. Introduction

The aggregation phenomenon occurs in many natural processes [1, 2]. In the past few
decades, considerable works have been devoted to understanding the kinetics of the aggregation
processes [3–5]. Many theoretical investigations exhibited that the kinetic behaviour of the
aggregation process may obey a scaling law in the long-time limit [6–9]. In general, most
of these works focused on the self-coalescence processes in which the aggregation reaction
spontaneously occurs between any two clusters of the same species, and a few studies paid
attention to the aggregation processes that occur only in the presence of another substance.
Kang and Redner [10] introduced a particle coalescence model (PCM), in which the clusters
are defined to be single lattice sites and the aggregation or annihilation reaction occurs
whenever two or more clusters occupy the same lattice site. In fact, the PCM implies that
the aggregation or annihilation reaction occurs only in the presence of the lattice site, namely,
the ‘immobile catalyst’, and it may thus be considered as a catalytically activated aggregation
model. Spouge solved the PCM in one dimension and presented a useful method for the
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solution of the diffusion–reaction problem [11]. Krapivsky investigated the aggregation–
annihilation analogue of the PCM in one dimension and found that the kinetic behaviour
of the system is dependent on the whole charge density and the spatial dimensionality [12].
Burlatsky et al [13] and Oshanin et al [14] introduced the three-molecule catalytically activated
reaction model (CARM) and analysed the kinetics of the processes by using an extension of
the Smoluchowski approach. Recently, the kinetic and equilibrium behaviours of the CARM
have been incisively investigated [15, 16]. The catalytically activated process can contribute
to produce the required products from a species which is chemically stable under normal
conditions, and it is thus of great practical and theoretical significance. In our previous work,
we proposed a single-species model in which the aggregation of the clusters is driven by the
catalyst and analysed the scaling behaviour of the cluster mass distribution in several different
cases [17].

This work aims at studying the kinetics of a two-species catalysis-driven aggregation
model in which the aggregation of one species occurs only in the presence of another
species. The first elementary reaction step of our aggregation scheme is a reversible reaction,
Ai + Bi′ � AiBi′ , and the second step consists of two simultaneous irreversible reactions,
AiBi′ + Aj → Ai+j + B∗

i′ and AiBi′ + Bj ′ → Bi′+j ′ + A∗
i . Here, both A and B species are

chemically stable species that cannot spontaneously coagulate by themselves but either species
is the catalyst for the aggregation of the other, and A∗

i and B∗
i′ are the products of the above

catalytic reactions. In contrast with the irreversible reaction, the reversible one may reach its
steady state with a very rapid rate. Thus, the catalytic reaction may be controlled only by the
second step of our aggregation scheme. The whole catalytic reactions then read

Ai + Aj + Bi′
KA(i;j;i′)−→ Ai+j + B∗

i′ Bi′ + Bj ′ + Ai

KB(i′;j ′;i)−→ Bi′+j ′ + A∗
i

where KA(i; j ; i ′) and KB(i ′; j ′; i) are the equivalent catalytic reaction rates. It is well known
that after the catalytic reaction, the product of the catalyst can still keep the catalytic ability
in some situations while it may lose the ability for other cases. In this work, we thoroughly
investigate the dependence of the kinetics of the aggregation system on the catalyst.

The present investigation is performed in the mean-field limit. The mean-field approach
to the reaction process assumes that the reaction proceeds at a rate proportional to the reactant
concentrations. On the other hand, the mean-field assumption neglects the spatial fluctuation
of the reactant densities and, therefore, applies to the case in which the spatial dimension
d of the system is equal to or greater than a critical dimension dc. As for the d < dc case,
fluctuations in the reactant densities may lead to a diffusion-controlled kinetics in the long-time
limit. It is found that for an irreversible aggregation system, dc = 2 [10]. In our catalysis-
driven aggregation model, the dominant reaction is also an irreversible binary aggregation-like
reaction, and it is thus sound that for our model, the critical dimension dc is also equal to 2.
For simplicity, the spatial dimension d of our system is assumed to be greater than 2 and the
mean-field approach is thus valid.

It is believed that catalysis-driven aggregation processes are of interest in studying the
scaling properties of their evolution behaviour. Based on the mean-field rate equations of the
catalysis-driven aggregation processes, we have derived the asymptotic solutions of the cluster
mass distributions. The results showed that the kinetics of our model depends strongly on
whether or not the catalyst is consumed through the catalytic reaction. In the case without
any consumption of the catalyst, the cluster mass distribution of either species satisfies the
conventional scaling law; while for the case with catalyst consumption, the evolution of
the clusters may fall in a peculiar scaling regime. On the other hand, the results have also
exhibited that the kinetic behaviour of this model is quite different from that of the conventional
self-aggregation systems [3–5].
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The paper is organized as follows. In section 2, we describe an irreversible catalysis-driven
aggregation model without any consumption of the catalyst and investigate the corresponding
mean-field rate equations to obtain the cluster mass distributions. In section 3, we then
investigate the evolution behaviour of an irreversible catalysis-driven aggregation model with
catalyst consumption. A brief summary is given in section 4.

2. The model without any consumption of the catalyst

We first investigate the catalysis-driven aggregation model in which the catalyst still keeps
its catalytic ability after the reaction. So both species are not consumed in this system. The
concentrations of A and B clusters of k-mers are respectively denoted as ak and bk. Here,
we consider a simple constant-reaction-rate model, in which the catalytic aggregation rates
KA(i; j ; i ′) and KB(i ′; j ′; i) are equal to I1 and I2, respectively. The theoretical approach to
this aggregation process is then based on the mean-field rate equations

dak

dt
= I1

2

∑
i+j=k

∞∑
l=1

aiajbl − I1ak

∞∑
j=1

∞∑
l=1

ajbl

dbk

dt
= I2

2

∑
i+j=k

∞∑
l=1

bibjal − I2bk

∞∑
j=1

∞∑
l=1

bjal.

(1)

Let NA(t) and NB(t) respectively denote the total numbers of A clusters and B clusters,
i.e., NA(t) = ∑∞

k=1 ak(t) and NB(t) = ∑∞
k=1 bk(t). By summing up equations (1) we obtain

dNA

dt
= −I1

2
N2

ANB

dNB

dt
= −I2

2
NAN2

B . (2)

Under the initial condition of NA(0) = A0 and NB(0) = B0, from equations (2) we derive the
exact solutions

NA(t) = A0(C1t + 1)−I1/(I1+I2) NB(t) = B0(C1t + 1)−I2/(I1+I2) (3)

where C1 = (I1 + I2)A0B0/2. Equations (3) show that in the long-time limit, the total number
of A clusters decays as t−I1/(I1+I2) while that of B clusters decays as t−I2/(I1+I2). We then turn
to determine the cluster mass distributions. Introducing two generating functions,

GA(z, t) =
∞∑

j=1

zjak(t) GB(z, t) =
∞∑

j=1

zjbj (t) (4)

we transform the governing rate equations (1) into the following equations:

dGA

dt
= I1

2
G2

ANB − I1GANANB

dGB

dt
= I2

2
G2

BNA − I2GBNANB. (5)

These Bernoulli equations can be directly solved to yield

GA(z, t) = GA0(z)E1(t)

1 − I1
2 GA0(z)

∫ t

0 E1(t ′)NB(t ′) dt ′

GB(z, t) = GB0(z)E2(t)

1 − I2
2 GB0(z)

∫ t

0 E2(t ′)NA(t ′) dt ′

(6)

with the shorthand notation GA0(z) ≡ GA(z, t = 0), GB0(z) ≡ GB(z, t = 0), E1(t) ≡
exp

[−∫ t

0 I1NA(t ′)NB(t ′) dt ′
]

and E2(t) ≡ exp
[−∫ t

0 I2NA(t ′)NB(t ′) dt ′
]
. Substituting

equations (2) into the equations of E1(t) and E2(t), one can find E1(t) = (C1t + 1)−2I1/(I1+I2)

and E2(t) = (C1t + 1)−2I2/(I1+I2).
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Equations (6) represent the general solutions of equations (5) under arbitrary initial
conditions. Now we consider a simple but important case, in which there only exist the
monomer clusters of A and B species at t = 0 and their concentrations respectively equal to
A0 and B0. Then the monodisperse initial conditions are

ak(0) = A0δk1 bk(0) = B0δk1. (7)

It is obvious that under the above initial conditions, GA0(z) = A0z and GB0(z) = B0z.
Expanding the resulting functions (6), one can then derive the following exact solutions:

ak(t) = A0E1(t)

[
I1A0

2

∫ t

0
E1(t

′)NB(t ′) dt ′
]k−1

bk(t) = B0E2(t)

[
I2B0

2

∫ t

0
E2(t

′)NA(t ′) dt ′
]k−1

.

(8)

Thus we obtain the exact solutions of the cluster mass distributions

ak(t) = A0(C1t + 1)−2I1/(I1+I2)[1 − (C1t + 1)−I1/(I1+I2)]k−1

bk(t) = B0(C1t + 1)−2I2/(I1+I2)[1 − (C1t + 1)−I2/(I1+I2)]k−1.
(9)

Introducing two scaling variables, x = k(C1t)
−I1/(I1+I2) and y = k(C1t)

−I2/(I1+I2), we can
further rewrite equations (9) as follows:

ak(t) � A0(C1t)
−2I1/(I1+I2) exp(−x) bk(t) � B0(C1t)

−2I2/(I1+I2) exp(−y) (10)

which are valid in the region of k � 1 and t � 1.
Generally, a function S(t) is used to denote the characteristic average mass of the clusters

in such an aggregation process and the concentration ck(t) of the k-mer clusters at large times
can be written in the following scaling form [6]:

ck(t) � t−w�[k/S(t)] S(t) ∝ tz. (11)

Here, the two governing exponents w and z are universally used to describe the scaling nature
of the aggregation system in the long-time limit. Equations (10) indicate that for this case,
the cluster mass distribution of either species approaches the conventional scaling form of
equations (11) at large times and the scaling exponents are

w = 2I1

I1 + I2
z = I1

I1 + I2
for A clusters

w = 2I2

I1 + I2
z = I2

I1 + I2
for B clusters.

(12)

These exponents are nonuniversal and dependent on the ratio between the aggregation rates
I1 and I2. When I1 = I2, the two species have the same scaling exponents, and they thus
evolve in similar scaling regimes, which are independent of the relative data of the initial
concentrations A0 and B0. Moreover, the typical mass S(t) of species A grows as tI1/(I1+I2)

while that of species B grows as tI2/(I1+I2).
On the other hand, it is not difficult to find that both species obey the mass conservation

law, MA(t) = ∑∞
k=1 kak(t) ≡ A0 and MB(t) = ∑∞

k=1 kbk(t) ≡ B0. This is natural for our
system without any consumption of either species.

3. The model with catalyst consumption

We now investigate the catalysis-driven aggregation process with catalyst consumption, in
which both the reaction products A∗

i and B∗
i′ lose their catalytic abilities through the reaction
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and then withdraw from the process. For simplicity, we also assume that the details of the
initial concentrations and the rate kernels for this model are the same as those for the above
model in section 2. The governing mean-field rate equations for this process then read

dak

dt
= I1

2

∑
i+j=k

∞∑
l=1

aiajbl − I1ak

∞∑
j=1

∞∑
l=1

ajbl − I2

2
ak

∞∑
i,j=1

bibj

dbk

dt
= I2

2

∑
i+j=k

∞∑
l=1

bibjal − I2bk

∞∑
j=1

∞∑
l=1

bjal − I1

2
bk

∞∑
i,j=1

aiaj .

(13)

Summing up equations (13), we obtain
dNA

dt
= −I1

2
N2

ANB − I2

2
NAN2

B

dNB

dt
= −I2

2
NAN2

B − I1

2
N2

ANB. (14)

From equations (14) we derive the following equations:

NB = NA − (A0 − B0)

dNA

dt
= −I1 + I2

2
NA(NA − A0 + B0)

[
NA − I2(A0 − B0)

I1 + I2

]
.

(15)

Equations (15) imply that the quantity Q = NA − NB is conserved by the dynamics of this
model. For the symmetrical initial case, A0 = B0 = C0, from equations (15) we obtain the
exact solutions

NA(t) = NB(t) = C0(C2t + 1)−1/2 (16)

where C2 = (I1 + I2)C
2
0 . Equation (16) indicates that for the symmetrical case, the total

number of each species decays as t−1/2 in the long-time limit. We then consider the
asymmetrical initial case. Without any loss of generality, we set A0 > B0. From equations (15)
one can determine the asymptotic solutions of NA(t) and NB(t) in the long-time limit,

NA(t) � C3 + C4 exp(−γ t) NB(t) � C4 exp(−γ t) (17)

where C3 = A0 − B0, C4 = B0A
I1/I2
0 C3[I1/(I1A0 + I2B0)](I1+I2)/I2 and γ = I1C

2
3

/
2.

Equations (17) indicate that for the asymmetrical case, the total number of species B decays
exponentially with time while that of species A may retain a certain value C3 in the long-time
limit.

We then turn to derive the solutions of the cluster mass distributions from equations (13).
Introducing the generating functions (4), we transform equations (13) into the following
equations:

dGA

dt
= I1

2
G2

ANB − I1GANANB − I2

2
GAN2

B

dGB

dt
= I2

2
G2

BNA − I2GBNANB − I1

2
GBN2

A.

(18)

The Bernoulli equations (18) can be directly solved to yield similar resulting generating
functions (6) with the different shorthand notation E1(t) ≡ exp

{−∫ t

0 dt ′
[
I1NA(t ′)NB(t ′) +

I2N
2
B(t ′)

/
2
]}

and E2(t) ≡ exp
{−∫ t

0 dt ′
[
I2NA(t ′)NB(t ′) + I1N

2
A(t ′)

/
2
]}

. These modified
equations can represent the general solutions for the system with the catalyst consumption
under arbitrary initial conditions. By making use of equations (14) we can obtain the following
equations:

E1(t) = NA(t)F1(t)

A0

∫ t

0
E1(t

′)NB(t ′) dt ′ = 2[1 − F1(t)]

I1A0

E2(t) = NB(t)F2(t)

B0

∫ t

0
E2(t

′)NA(t ′) dt ′ = 2[1 − F2(t)]

I2B0

(19)
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with the shorthand notation F1(t) ≡ {[(I1 + I2)NA(t) + I2(B0 − A0)]/(I1A0 + I2B0)}I1/(I1+I2)

and F2(t) ≡ {[(I1 + I2)NB(t)+ I1(A0 −B0)]/(I1A0 + I2B0)}I2/(I1+I2). Under the monodisperse
initial conditions (7), one can also expand the modified resulting functions (6) to derive the
same solutions (8) of the cluster mass distributions for this case.

In the symmetrical initial case, we obtain the scaling solutions of the cluster mass
distributions

ak(t) � C0(C2t)
−(2I1+I2)/(2I1+2I2) exp(−x) x = k(C2t)

−I1/(2I1+2I2)

(20)
bk(t) � C0(C2t)

−(I1+2I2)/(2I1+2I2) exp(−y) y = k(C2t)
−I2/(2I1+2I2).

Equations (20) show that both species scale according to the conventional form (11) and the
scaling exponents are

w = 2I1 + I2

2I1 + 2I2
z = I1

2I1 + 2I2
for A clusters

(21)
w = I1 + 2I2

2I1 + 2I2
z = I2

2I1 + 2I2
for B clusters

which are nonuniversal and depend on the ratio of the aggregation rates. In this case, the
typical mass of species A grows as tI1/2(I1+I2) while that of species B grows as tI2/2(I1+I2). On
the other hand, we also find that the total mass of species A decays as t−I2/2(I1+I2) while that
of species B decays as t−I1/2(I1+I2). For this case, both species cannot survive at the end.

In the asymmetrical initial case, we determine the asymptotic solutions of the cluster mass
distributions as follows:

ak(t) � C6(1 − C5)
k exp(−x) x = C7k exp(−γ t)

(22)
bk(t) � C9(1 − C8)

k e−γ t exp(−y) y = C10k exp(−γ t)

where C5 = [I1C3/(I1A0 + I2B0)]I1/(I1+I2), C6 = C3C5, C7 = C4C5/C3(1 − C5), C8 =
[I1C3/(I1A0 +I2B0)]I2/(I1+I2), C9 = C4C8 and C10 = I2C9/I1C3(1−C8). The results indicate
that the conventional scaling description of the cluster mass distribution breaks down for either
species and both species scale only according to the following modified form [9]:

ck(t) � hk[f (t)]−w�[k/S(t)] S(t) ∝ [f (t)]z (23)

where h is a constant (0 < h < 1) and f (t) is an unusual function of time, such as et , ln t, 2t ,
and so on. In this case, the scaling function is exponential, f (t) = exp(t). The governing
exponents for species A are w = 0 and z = I1(A0 − B0)

2/2, while those for species B
are w = z = I1(A0 − B0)

2/2. These indicate that for the asymmetrical case, the scaling
properties of the cluster mass distributions depend crucially on the reaction rate of species A

as well as the difference between the initial concentrations A0 and B0. On the other hand,
the modified scaling form (23) also indicates that two different mass scales, a growing scale
and a time-independent one, are associated with either species. From equations (22) we find
that both species have the same growing scale S(t) ∼ eγ t , which is forced by the catalytic
reactions. Meanwhile, the time-independent scale for species A is SA = 1/C5 and that for
species B is SB = 1/C8, which dominate the evolution behaviour of the two species in the
long-time limit. Moreover, it is also instructive to make a comparison between the total mass
of species A and that of species B,

MA(t) =
∞∑

k=1

kak � A0 − B0

C5
MB(t) =

∞∑
k=1

kbk � C−2
8 C9 e−γ t at t � 1 (24)

which show that the total mass of species B decays rapidly as e−γ t while that of species A will
always retain a certain value after a long time. Hence, only species A, which has the larger
initial concentration, can survive at the end.
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4. Summary

We have investigated the kinetics of the two-species catalysis-driven aggregation processes
with a constant-reaction-rate kernel. Based on the mean-field theory, we have analysed the
dependence of the kinetics of the system on the catalysis. The results exhibited that whether
or not the catalytic clusters are consumed through the reaction plays an important role in the
kinetics of the system.

In the first model without any consumption of the catalytic clusters, we found that the
evolution behaviour of the cluster mass distribution of either species obeys a conventional
scaling law. The scaling exponents are some nonuniversal constants dependent on the ratio
between the catalytic reaction rates I1 and I2. Moreover, the total number of either species
decays with time while the total mass is always conserved by the dynamics of the system.

In the second model with catalyst consumption, the kinetics of the system depends
strongly on the initial concentrations. For the symmetrical initial case, the cluster mass
distribution of either species approaches the conventional scaling form with nonuniversal
governing exponents; moreover, the total number and the total mass of either species decay
with time and no species can survive at the end. For the asymmetrical initial case, both species
scale according to the modified form and the scaling exponents are dependent on the initial
concentration difference and the reaction rate of the heavy species with the larger initial data;
moreover, both the total number and the total mass of the heavy species can respectively
retain a certain value in the long-time limit while those of the light species always decay
exponentially with time.
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